Варианты зачисления на курс

Теория вероятностей и математическая статистика

Содержание курса

Тема 1.1. Понятие вероятности. Элементы комбинаторики. Принципы комбинаторики. Основные формулы: перестановки, размещения, сочетания. Испытание. Пространство элементарных событий. Событие. Операции над событиями. Понятие вероятности. Статистическое и классическое определение вероятности.

Тема 1.2. Элементарные теоремы. Теоремы сложения. Условная вероятность. Теоремы умножения. Формула полной вероятности. Формула Байеса. Повторные независимые испытания. Формула Бернулли. Локальная и интегральная теоремы Муавра – Лапласа.

Тема 1.3. Случайные величины. Случайная величина. Дискретная и непрерывная случайная величина. Способы задания. Функция распределения. Числовые характеристики случайных величин: математическое ожидание и дисперсия. Законы распределения случайных величин. Нормальный закон. Закон больших чисел. Центральная предельная теорема. Марковские цепи.

Тема 2.1. Обработка статистических данных. Генеральная совокупность и выборка. Вариационный ряд. Выборочное среднее, мода, медиана, размах. Виды выборки. Требования к выборке. Точечная оценка параметров. Доверительные интервалы.

Тема 2.2. Задачи математической статистики. Корреляционная зависимость. Линейная корреляция. Уравнения регрессии. Коэффициент корреляции. Статистическая проверка гипотез.

Результаты освоения курса

Выпускник знает:

основные теоретико-вероятностные и статистические модели;

Умеет:

решать типовые задачи на применение изученных моделей для описания взаимодействия объектов;

Владеет:

навыками практического использования математического аппарата теории вероятности и статистики для утверждения и контроля методов и способов взаимодействия программного средства со своим окружением.

Гости не имеют доступа к этому курсу. Войдите в систему.